2006 Vol. 8, No. 23 5413-5416

Reactivity and Selectivity of 1,3-Diyn-6-enes in Electrophilic Transition Metal-Catalyzed Reactions

Eun Jin Cho, Mansuk Kim, and Daesung Lee*

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 dlee@chem.wisc.edu

Received September 21, 2006

ABSTRACT

1,3-Diyne is an excellent source of alkynyl metal carbene species upon activation with an electrophilic metal catalyst. The products from this bond reorganization process suggest that the metal carbene species, generated from the preferential participation of an acetate over an alkene in the first step, undergo an efficient metallotropic [1,3]-shift followed by termination via cyclopropanation.

The metal-catalyzed reactions of 1,n-enynes (n = typically 5-7) are versatile synthetic tools whereby unsaturated cyclic molecular frameworks can be generated efficiently. One topical subject of research involving enynes of type 1 is their activation by an electrophilic metal catalyst. When the alkyne is not terminal (R = alkyl or aryl group), allenyl actetate 3 is the most frequently observed final product or intermediate for the subsequent reaction, which is believed to proceed through an intermediate 2 via the [1,3]-migration of an acetate (Scheme 1). On the other hand, when the alkyne is

terminal (R = H), a pathway leading to product 5 is generally preferred. The formation of 5 is the consequence of two possible reaction pathways that involve alkylidene species 4 and 7. Although evidence from theoretical calculations³

Scheme 1

$$R = alkyl, aryl$$

$$R = Alkyl$$

$$R = Alkyl, aryl$$

$$R = Alkyl$$

⁽¹⁾ Reviews: (a) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (c) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215. Reviews for gold-catalyzed reactions: (d) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200. (e) Hashimi, A. S. K. Angew. Chem., Int. Ed. 2005, 3, 6990. (f) Höffmann-Röder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (g) Hashimi, A. S. K. Gold Bull. 2004, 37, 51. (h) Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237.

⁽²⁾ Formation of allene as a final product or an intermediate, see: (a) Marion, N.; Diez-Gonzalez, S.; de Fremont, P.; Nolan, S. P. Angew. Chem., Int. Ed. 2006, 45, 3647. (b) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442. (c) Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett. 2006, 8, 1957. (d) Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436. (e) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (f) Cariou, K.; Mainetti, E.; Fensterbank, L.; Malacria, M. Tetrahedron 2004, 60, 9745.

and experiments⁴ favorably suggests the involvement of intermediate **4** over that of **6**/**7**, the preference among these reaction pathways should depend on the interplay of many factors,⁵ the most important of which seems to be the nature of the R substituent.⁶ Given the cationic charge development on the alkyne moiety upon complexation of electrophilic metals, the role of R as an electron-releasing group seems to be pivotal in determining the fate of the initially formed alkyne—metal complex, generating intermediates **2**, **4**, or **6**. This hypothesis is further supported by the reactions of related enynes of type **8**, where the nature of X determines the formation of intermediates **9** and **11**, which eventually generate products **10/10**′ and **12**, respectively (Scheme 2).⁷

We envisioned that the use of 1,3-diyne moiety in 1, where R = alkyne, would not only bias the electronics of the reacting alkyne to form metal carbenes but also allow these initially formed alkylidene intermediates to undergo metallotropic [1,3]-shift,8 thereby promoting the mode of reaction pathway not available for the monoalkyne-containing enyne 1. Herein we report a unique selectivity profile of 1,3-diynes

Table 1. Reactivity of Alkene vs Acetate as the Initiator^a

entry	substrate	product	yield (Z:E) b,c,
1	CO ₂ Et CO ₂ Et	EtO ₂ C CO ₂ Et	88% (2.5:1)
2 Ph	CO ₂ Et CO ₂ Et OAc	EtO ₂ C CO ₂ Et	92% (6.5:1)
3	13c	OAC OAC 14c	87% (2.7:1)
4	NTs NTs	NTs 14d	82% (4.7:1)
5	13e CO ₂ Et CO ₂ Et	EtO ₂ C CO ₂ Et	98%
6	13f O(p-NO ₂)Bz	14f	90%

^a With 5 mol % catalyst loading under balloon pressure of CO. ^b All yields are isolated yields after 4 h of total reaction time. ^c The E/Z ratios were determined by ¹H NMR before purification. ^d The E/Z ratios change during the purification.

upon electrophilic metal activation to form alkynyl alkylidenes and their subsequent facile metallotropic [1,3]-shift.

First, the reactivity of 1,3-diynes **13a**⁹ that contain both the competing tethered alkene and propargylic acetoxy group was examined with several different metal complexes. ¹⁰ From a brief screening, a platinum-based catalyst system PtCl₂/CO in toluene at 80 °C, a condition used by Fürstner for the reactions of enynes of type **1**, ^{11,12} was found to be most

(12) The current reaction resulted in a low conversion without CO.

5414 Org. Lett., Vol. 8, No. 23, 2006

^{(3) (}a) Soriano, E.; Ballesteros, P.; Marco-Contelles, J. *Organometallics* **2005**, *24*, 3182. (b) Nieto-Oberhuber, C.; Paz Muñoz, M.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. *Angew. Chem.*, *Int. Ed.* **2005**, *44*, 6146.

^{(4) (}a) Fürstner, A.; Hannen, P. *Chem. Eur. J.* **2006**, *12*, 3006. For a slightly different mechanistic interpretation, see: (b) Fehr, C.; Galindo, J. *Angew. Chem., Int. Ed.* **2006**, *45*, 2901.

⁽⁵⁾ For the Rautenstrauch reaction involving 3-acetoxy-1,4-enynes, see: (a) Faza, O. N.; Lopez, C. S.; Alvarez, R.; de Lera, A. R. *J. Am. Chem. Soc.* **2006**, *128*, 2434. (b) Shi, X.; Gorin, D. J.; Toste, F. D. *J. Am. Chem. Soc.* **2005**, *127*, 5802. (c) Rautenstrauch, V. *J. Org. Chem.* **1984**, *49*, 950.

⁽⁶⁾ For reactions of 3-acetoxy-1,4- and 1,5-enynes with electron-withdrawing carboxylate substituent, see: (a) Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. *J. Am. Chem. Soc.* **2005**, *127*, 12468. (b) Reference 2f. (7) For a theoretical calculations for divergent skeletal rearrangement of 1.6-enynes, see ref 3b.

^{(8) [1,3]-}Shift: (a) Kim, M.; Lee, D. J. Am. Chem. Soc. 2005, 127, 18024. (b) Kim, M.; Miller, R. L.; Lee, D. J. Am. Chem. Soc. 2005, 127, 12818. (c) Barluenga, H.; de la Ruá, R. B.; de Sáa, D.; Ballesteros, A.; Tomás, M. Angew. Chem., Int. Ed. 2005, 44, 4981. (d) van Otterlo, W. A. L.; Ngidi, E. L.; de Koning, C. B.; Fernandes, M. A. Tetrahedron Lett. 2004, 45, 659. (e) Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J. M.; Xu, S. L. J. Am. Chem. Soc. 1993, 115, 2637. [1,1.5]-Shift: (f) Casey, C. P.; Dzwiniel, T. L. Organometallics 2003, 22, 5285. (g) Casey, C. P.; Dzwiniel, T. L.; Kraft, S.; Guzei, I. A. Organometallics 2003, 22, 3915. (h) Ortin, Y.; Sournia-Saquet, A.; Lugan, N.; Mathieu, R. Chem. Commun. 2003, 1060. (i) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2001, 20, 2651. (k) Casey, C. P.; Kraft, S.; Kavana, M. Organometallics 2001, 20, 3795. (l) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2002, 3795. (l) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2002,

^{124, 2584.} Also see recent examples of the closely related bond shift of free alkynyl carbenes: (m) Bowling, N. P.; Halter, R. J.; Hodges, J. A.; Seburg, R. A.; Thomas, P. S.; Simmons, C. S.; Stanton, J. F.; McMahon, R. J. J. Am. Chem. Soc. 2006, 128, 3291 and references therein.

⁽⁹⁾ For the preparation of diynes, see the Supporting Information.

⁽¹⁰⁾ Pt- and Au-catalyzed rearrangement of 1,3-diynes, see: (a) Cho, E. J.; Kim, M.; Lee, D. *Eur. J. Org. Chem.* **2006**, 3074. See also [RuCl₂-(CO)₃]₂-catalyzed reaction: (b) Miki, K.; Ohe, K.; Uemura, S. *J. Am. Chem. Soc.* **2006**, *128*, 9270.

⁽¹¹⁾ Representative examples of PtCl₂-catalyzed reactions with/without CO: (a) Fürstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244. (b) Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654. (c) Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouriès, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656. (d) Nevado, C.; Ferrer, C.; Echavarren, A. M. Org. Lett. 2004, 6, 3191. (e) Mainetti, E.; Mouriès, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed. 2002, 41, 2132. (f) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (g) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics 1996, 15, 901.

Table 2. Selectivity of 5-Exo vs 6-Endo Ring Closure^a

enti	y substrate	product	yield (%)
1	EtO ₂ C 15a EtO	EtO ₂ C CO ₂ EI	t 96
	1 ^	16b	6.3
2	15b	17b	23
3		16c	25
J	15c	17c	trace
4	TsN NTs	TsN 17d	63

^a With 5 mol % catalyst loading. ^b All yields are isolated yields.

effective, generating 14a in 88% yield with Z/E = 2.5:1(entry 1, Table 1). Under the same conditions, substrate 13b containing a phenyl instead of methyl group gave better yield and selectivity (entry 2). Heteroatom substituents in the tether of 13c and 13d are tolerant, providing comparable yields and selectivity for 14c and 14d, respectively (entries 3 and 4). Substrates 13e and 13f with a tertiary p-nitrobenzoate provided excellent yields of products 14e and 14f (entries 5 and 6). The formation of bicyclo[3.1.0]hexane moieties in products 14a-f strongly indicates that the acetate/benzoate should be the kinetically more reactive initiating functionality, directing these reactions to occur following the path similar to $1 \rightarrow 6 \rightarrow 7$ in Scheme 1. If the reaction initially occurred via the participation of the tethered alkene, the final products 14c, 14d, and 14f from substrates 13c, 13d, and 13f should have contained bicyclo[4.1.0]heptene moiety based on the general reactivity pattern (via intermediate 11) shown in Scheme 2.

To confirm our belief that transformation of **13a-f** involved an initial acetate or benzoate participation rather than the alkene, as well as to gain further insight into the role of diynes in 5-exo/6-endo type ring closure selectivity in Scheme 2, symmetrical diynes **15a-d** were examined (Table 2).¹³ Treatment of substrate **15a** with PtCl₂/CO in

Table 3. Differential Reactivity of Alkene vs Acetate^a

entry	substrate	product	yield (Z:E)b,c
1	OAc OAc	AcO OAc 19a	80% (1.3:1)
2	CO ₂ Et CO ₂ Et	EtO ₂ C CO ₂ Et	67% (1.2:1)
3	OAC	OAC OAC OAC	33% (3.5:1)
Ü	18c	19c'	57% (2.2:1)
4	OAc Br 18d	OAC press	50% (2.5:1)

^a With 5 mol % catalyst loading. ^b All yields are isolated yields. ^c The ratios were determined by ¹H NMR before purification.

toluene at 80 °C provided exclusively the 5-exo-product 16a in 96% yield after 12 h without any formation of the 6-endo-product (entry 1). However, 15b gave a mixture of 5-exo-product 16b and 6-endo-product 17b in 6.3% and 23% yield at 30% conversion (entry 2), while 15c gave 16c and 17c in 25% and trace amount, respectively (entry 3). The N-toluensulfonyl group-containing substrate 15d gave only 6-endo-product 17d (entry 4). The observed product distribution clearly showed the role of the heteroatom substituent to affect the reaction course of 1,3-diyne substrates 15a-d to form 16a-c and 17b-d, which follows the general trend depicted in Scheme 2. Furthermore, this result strongly supports the notion that the reactions in Table 1 should involve the initial acetate and benzoate participation rather than the alkene. 16

Next, the selectivity between propargylic polar functional groups (acetate or bromide) and the tethered alkenes for the carbenoid reaction in the termination step was examined (Table 3). Symmetrical substrate **18a** containing two acetates and two alkenes provided an Z/E mixture of products **19a** in 80% yield (Z/E = 1.3:1) (entry 1). Similarly, substrate **18b** gave exclusive formation of **19b** with slightly lower yield

Org. Lett., Vol. 8, No. 23, 2006 5415

⁽¹³⁾ The reaction of **15a,b** with PtCl₂, AuCl₃, Ph₃PAuCl, PdCl₂(PhCN)₂, and [Rh(OAc) $_2$] $_2$ gave low conversion.

⁽¹⁴⁾ A gold-catalyzed reaction of **15a** to generate **16a** was reported recently, see: Lopez, S.; Herrero-Gomez, E.; Perez-Galan, P.; Nieto-Oberhuber, C.; Echavarren, A. M. *Angew. Chem.*, *Int. Ed.* **2006**, *45*, 6029.

⁽¹⁵⁾ Unstable enol ether **17b** could be isolated only when the reaction was stopped at low conversion; however, **17c** was too unstable to be isolated under the reaction conditions.

⁽¹⁶⁾ The preferential participation of acetate in these reactions is the opposite to the reactivity observed and predicted by that of monoynes with propargylic acetates, see refs 3a and 4a.

(67%) (Z/E = 1.2:1) (entry 2). The reaction of substrate 18c that contains two different acetates provided 19c and 19c' in 33% and 57% yield, respectively (entry 3). Product 19c is the result of initiation of the reaction from the left-hand side acetate of 18c followed by metallotropic [1,3]-shift and termination with the other acetate, whereas product 19c' is the consequence of initiation from the right-hand side acetate followed by metallotropic [1,3]-shift and the termination of the putative alkylidene intermediate via cyclopropanation. Reaction of substrate 18d containing a bromide provided 19d as a sole product in marginal yield, which we believe is the consequence of the initiation from the acetate and termenation by the alkene via cyclopropanation (entry 4).

The observed product distribution clearly suggests that acetates preferentially participate at the initial formation of carbenoid intermediates whereas the tethered alkenes participate in the termination step favorably. The general reactivity and selectivity trend is illustrated with substrate **18a** in Scheme 3. The formation of *Z/E*-mixtures of the vinyl

acetate moiety in these products endorses this conclusion, where the vinyl acetate formed during the formation of carbenoid intermediates generally gives a mixture of *Z/E*-stereochemistry, while that formed from the termination step selectively generates *E*-stereochemistry.^{10a}

In conclusion, we have demonstrated that 1,3-divnes behave in predictable yet distinctive manners compared to simple enynes under electrophilic transition metal-mediated reaction conditions. This characteristic behavior of 1,3-diynes is presumably caused by the slightly electron-withdrawing nature of the alkynyl substituent, which not only renders the preferred formation 5-exo-type alkylidenes (similar to 9) but also allows for the subsequent [1,3]-metallotropic shift. Several salient features of reactions with this functionality include the following: (a) an acetate is more reactive than the tethered alkene as an initiator, generating [1,2]-acetate migrated alkylidene intemediate whereas an alkene is a better terminator than an acetate/bromide to generate the cyclopropane moiety, (b) allene products are not formed at all under current reaction conditions, (c) 5-exo/6-endo type alkylidene formation depends on the heteroatom substituent in the tether, and (d) facile metallotropic [1,3]-shift of the intermediate alkylidenes occurred whenever possible.

Acknowledgment. We thank NSF (CHE 0401783) and the Sloan Foundation for financial support of this work as well as the NSF and NIH for NMR and mass spectrometry instrumentation.

Supporting Information Available: General procedures and characterization data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org. OL062335C

5416 Org. Lett., Vol. 8, No. 23, 2006